Building IP: BMY Patent Appl "METHODS OF TREATING TUMOR" | BMY Message Board Posts


Bristol-Myers Squibb Co.

  BMY website

BMY   /  Message Board  /  Read Message

 

 






Keyword
Subject
Between
and
Rec'd By
Authored By
Minimum Recs
  
Previous Message  Next Message    Post Message    Post a Reply return to message boardtop of board
Msg  11713 of 12104  at  9/21/2023 4:21:17 PM  by

JBWIN


Building IP: BMY Patent Appl "METHODS OF TREATING TUMOR"

 

METHODS OF TREATING TUMOR

DOCUMENT ID

US 20230295737 A1

DATE PUBLISHED

2023-09-21

INVENTOR INFORMATION

NAME

CITY

STATE

ZIP CODE

COUNTRY

BHAGAVATHEESWARAN; Prabhu Seshaiyer
Hamden
CT
N/A
US
BOTWOOD; Nicholas Allan John
Princeton
NJ
N/A
US
CHANG; Han
West Windsor
NJ
N/A
US
FU; Yali
Princeton
NJ
N/A
US
GEESE; William J.
Pipersville
PA
N/A
US
GREEN; George A.
Newton
NJ
N/A
US
HEALEY; Diane
Madison
CT
N/A
US
MAIER; Sabine
Lawrenceville
NJ
N/A
US
NATHAN; Faith E.
Moorestown
NJ
N/A
US
OUKESSOU; Abderrahim
Skillman
NJ
N/A
US
SELVAGGI; Giovanni
Brooklyn
NY
N/A
US
SZUSTAKOWSKI; Joseph Daniel
Pennington
NJ
N/A
US

APPLICANT INFORMATION

NAME
Bristol-Myers Squibb Company
CITY
Princeton
STATE
NJ
ZIP CODE
N/A
COUNTRY
US
AUTHORITY
N/A
TYPE
assignee

ASSIGNEE INFORMATION

NAME
Bristol-Myers Squibb Company
CITY
Princeton
STATE
NJ
ZIP CODE
N/A
COUNTRY
US
TYPE CODE
02

APPLICATION NO

18/063015

DATE FILED

2022-12-07

DOMESTIC PRIORITY (CONTINUITY DATA)

parent US continuation 16499540 20190930 ABANDONED WO continuation PCT/US2018/025518 20180330 child US 18063015

us-provisional-application US 62582146 20171106

us-provisional-application US 62479817 20170331

US CLASS CURRENT:

435/6.11

CPC CURRENT

TYPE

CPC

DATE

CPCI
2013-01-01
CPCA
2013-01-01
CPCA
2013-01-01

Abstract

The disclosure provides a method for treating a subject afflicted with a tumor, e.g., lung cancer, having a high tumor mutation burden (TMB) status comprising administering to the subject an immunotherapy, e.g., an anti-PD-1 antibody or antigen-binding portion thereof. The present disclosure also provides a method for identifying a subject suitable for an immunotherapy, e.g., a treatment with an anti-PD-1 antibody or antigen-binding portion thereof, comprising measuring a TMB status of a biological sample of the subject. A high TMB status identifies the patient as suitable for treatment with an anti-PD-1 antibody or antigen-binding portion thereof. The TMB status can be determined by sequencing nucleic acids in the tumor and identifying a genomic alteration, e.g., a somatic nonsynonymous mutation, in the sequenced nucleic acids.

Background/Summary

FIELD OF THE DISCLOSURE

[0001] The present disclosure provides a method for treating a subject afflicted with a tumor having a high tumor mutational burden (TMB) status comprising administering to the subject an immunotherapy. In some embodiments, the immunotherapy comprises an antibody or an antigen-binding fragment thereof. In certain embodiments, the immunotherapy comprises an anti-PD-1 antibody or antigen-binding portion thereof or an anti-PD-L1 antibody or antigen-binding portion thereof.

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002] The content of the electronically submitted sequence listing in ASCII text file (Name: 3338066PC02_sequence_ST25.txt; Size: 38,235 bytes; and Date of Creation: Mar. 30, 2018) is incorporated herein by reference in its entirety.

BACKGROUND OF THE DISCLOSURE

[0003] Human cancers harbor numerous genetic and epigenetic alterations, generating neoantigens potentially recognizable by the immune system (Sjoblom et al., Science (2006) 314(5797):268-274). The adaptive immune system, comprised of T and B lymphocytes, has powerful anti-cancer potential, with a broad capacity and exquisite specificity to respond to diverse tumor antigens. Further, the immune system demonstrates considerable plasticity and a memory component. The successful harnessing of all these attributes of the adaptive immune system would make immunotherapy unique among all cancer treatment modalities.

[0004] Until recently, cancer immunotherapy had focused substantial effort on approaches that enhance anti-tumor immune responses by adoptive-transfer of activated effector cells, immunization against relevant antigens, or providing non-specific immune-stimulatory agents such as cytokines. In the past decade, however, intensive efforts to develop specific immune checkpoint pathway inhibitors have begun to provide new immunotherapeutic approaches for treating cancer, including the development of antibodies such as nivolumab and pembrolizumab (formerly lambrolizumab; USAN Council Statement, 2013) that bind specifically to the Programmed Death-1 (PD-1) receptor and block the inhibitory PD-1/PD-1 ligand pathway (Topalian et al., 2012a, b; Topalian et al., 2014; Hamid et al., 2013; Hamid and Carvajal, 2013; McDermott and Atkins, 2013).

[0005] PD-1 is a key immune checkpoint receptor expressed by activated T and B cells and mediates immunosuppression. PD-1 is a member of the CD28 family of receptors, which includes CD28, CTLA-4, ICOS, PD-1, and BTLA. Two cell surface glycoprotein ligands for PD-1 have been identified, Programmed Death Ligand-1 (PD-L1) and Programmed Death Ligand-2 (PD-L2), that are expressed on antigen-presenting cells as well as many human cancers and have been shown to downregulate T cell activation and cytokine secretion upon binding to PD-1. Inhibition of the PD-1/PD-L1 interaction mediates potent antitumor activity in preclinical models (U.S. Pat. Nos. 8,008,449 and 7,943,743), and the use of antibody inhibitors of the PD-1/PD-L1 interaction for treating cancer has entered clinical trials (Brahmer et al., 2010; Topalian et al., 2012a; Topalian et al., 2014; Hamid et al., 2013; Brahmer et al., 2012; Flies et al., 2011; Pardoll, 2012; Hamid and Carvajal, 2013).

[0006] Nivolumab (formerly designated 5C4, BMS-936558, MDX-1106, or ONO-4538) is a fully human IgG4 (S228P) PD-1 immune checkpoint inhibitor antibody that selectively prevents interaction with PD-1 ligands (PD-L1 and PD-L2), thereby blocking the down-regulation of antitumor T-cell functions (U.S. Pat. No. 8,008,449; Wang et al., 2014). Nivolumab has shown activity in a variety of advanced solid tumors, including renal cell carcinoma (renal adenocarcinoma, or hypernephroma), melanoma, and non-small cell lung cancer (NSCLC) (Topalian et al., 2012a; Topalian et al., 2014; Drake et al., 2013; WO 2013/173223).

[0007] The immune system and response to immuno-therapy are complex. Additionally, anti-cancer agents can vary in their effectiveness based on the unique patient characteristics. Accordingly, there is a need for targeted therapeutic strategies that identify patients who are more likely to respond to a particular anti-cancer agent and, thus, improve the clinical outcome for patients diagnosed with cancer.

SUMMARY OF THE DISCLOSURE

[0008] The present disclosure provides a method for treating a subject afflicted with a tumor comprising administering to the subject a therapeutically effective amount of an anti-PD-1 antibody or antigen-binding portion thereof, wherein the tumor has a tumor mutational burden (TMB) status that is a high TMB. In some embodiments, the method further comprises measuring the TMB status of a biological sample obtained from the subject.

[0009] The present disclosure also provides a method of identifying a subject suitable for a therapy of an anti-PD-1 antibody or antigen-binding portion thereof comprising measuring a TMB status of a biological sample of the subject, wherein the TMB status is a high TMB thereby the subject is identified as being suitable for the therapy of an anti-PD-1 antibody or antigen-binding portion thereof. In one embodiment, the method further comprises administering to the subject the anti-PD-1 antibody or antigen-binding portion thereof.

[0010] In some embodiments, the TMB status is determined by sequencing nucleic acids in the tumor and identifying a genomic alteration in the sequenced nucleic acids. In some embodiments, the genomic alteration comprises one or more somatic mutations. In some embodiments, the genomic alteration comprises one or more nonsynonymous mutations. In a particular embodiment, the genomic alteration comprises one or more missense mutations. In other particular embodiments, the genomic alteration comprises one or more alterations selected from the group consisting of a base pair substitution, a base pair insertion, a base pair deletion, a copy number alteration (CNA), a gene rearrangement, and any combination thereof.

[0011] In particular embodiments, the TMB status is determined by genome sequencing, exome sequencing, and/or genomic profiling. In one embodiment, the genomic profile comprises at least 300 genes, at least 305 genes, at least 310 genes, at least 315 genes, at least 320 genes, at least 325 genes, at least 330 genes, at least 335 genes, at least 340 genes, at least 345 genes, at least 350 genes, at least 355 genes, at least 360 genes, at least 365 genes, at least 370 genes, at least 375 genes, at least 380 genes, at least 385 genes, at least 390 genes, at least 395 genes, or at least 400 genes. In a particular embodiment, the genomic profile comprises at least 325 genes.

[0012] In one embodiment, the genomic profile comprises one or more genes selected from the group consisting of ABL1, BRAF, CHEK1, FANCC, GATA3, JAK2, MITF, PDCDILG2, RBM10, STAT4, ABL2, BRCA1, CHEK2, FANCD2, GATA4, JAK3, MLH1, PDGFRA, RET, STK11, ACVR1B, BRCA2, CIC, FANCE, GATA6, JUN, MPL, PDGFRB, RICTOR, SUFU, AKT1, BRD4, CREBBP, FANCF, GID4 (C17orf39), KAT6A (MYST3), MRE11A, PDK1, RNF43, SYK, AKT2, BRIP1, CRKL, FANCG, GLI1, KDM5A, MSH2, PIK3C2B, ROS1, TAF1, AKT3, BTG1, CRLF2, FANCL, GNA11, KDM5C, MSH6, PIK3CA, RPTOR, TBX3, ALK, BTK, CSF1R, FAS, GNA13, KDM6A, MTOR, PIK3CB, RUNX1, TERC, AMER1 (FAM123B), C11orf30 (EMSY), CTCF, FAT1, GNAQ, KDR, MUTYH, PIK3CG, RUNX1T1, TERT (promoter only), APC, CARD11, CTNNA1, FBXW7, GNAS, KEAP1, MYC, PIK3R1, SDHA, TET2, AR, CBFB, CTNNB1, FGF10, GPR124, KEL, MYCL (MYCL1), PIK3R2, SDHB, TGFBR2, ARAF, CBL, CUL3, FGF14, GRIN2A, KIT, MYCN, PLCG2, SDHC, TNFAIP3, ARFRP1, CCND1, CYLD, FGF19, GRM3, KLHL6, MYD88, PMS2, SDHD, TNFRSF14, ARID1A, CCND2, DAXX, FGF23, GSK3B, KMT2A (MLL), NF1, POLD1, SETD2, TOP1, ARID1B, CCND3, DDR2, FGF3, H3F3A, KMT2C (MLL3), NF2, POLE, SF3B1, TOP2A, ARID2, CCNE1, DICER1, FGF4, HGF, KMT2D (MLL2), NFE2L2, PPP2R1A, SLIT2, TP53, ASXL1, CD274, DNMT3A, FGF6, HNF1A, KRAS, NFKBIA, PRDM1, SMAD2, TSC1, ATM, CD79A, DOT1L, FGFR1, HRAS, LMO1, NKX2-1, PREX2, SMAD3, TSC2, ATR, CD79B, EGFR, FGFR2, HSD3B1, LRP1B, NOTCH1, PRKAR1A, SMAD4, TSHR, ATRX, CDC73, EP300, FGFR3, HSP90AA1, LYN, NOTCH2, PRKCI, SMARCA4, U2AF1, AURKA, CDH1, EPHA3, FGFR4, IDH1, LZTR1, NOTCH3, PRKDC, SMARCB1, VEGFA, AURKB, CDK12, EPHA5, FH, IDH2, MAGI2, NPM1, PRSS8, SMO, VHL, AXIN1, CDK4, EPHA7, FLCN, IGF1R, MAP2K1, NRAS, PTCH1, SNCAIP, WISP3, AXL, CDK6, EPHB1, FLT1, IGF2, MAP2K2, NSD1, PTEN, SOCS1, WT1, BAP1, CDK8, ERBB2, FLT3, IKBKE, MAP2K4, NTRK1, PTPN11, SOX10, XPO1, BARD1, CDKN1A, ERBB3, FLT4, IKZF1, MAP3K1, NTRK2, QKI, SOX2, ZBTB2, BCL2, CDKN1B, ERBB4, FOXL2, IL7R, MCL1, NTRK3, RAC1, SOX9, ZNF217, BCL2L1, CDKN2A, ERG, FOXP1, INHBA, MDM2, NUP93, RAD50, SPEN, ZNF703, BCL2L2, CDKN2B, ERRF11, FRS2, INPP4B, MDM4, PAK3, RAD51, SPOP, BCL6, CDKN2C, ESR1, FUBP1, IRF2, MED12, PALB2, RAF1, SPTA1, BCOR, CEBPA, EZH2, GABRA6, IRF4, MEF2B, PARK2, RANBP2, SRC, BCORL1, CHD2, FAM46C, GATA1, IRS2, MEN1, PAX5, RARA, STAG2, BLM, CHD4, FANCA, GATA2, JAK1, MET, PBRM1, RB1, STAT3, and any combination thereof.

[0013] In some embodiments, the methods further comprise identifying a genomic alteration in one or more of ETV4, TMPRSS2, ETV5, BCR, ETV1, ETV6, and MYB.

[0014] In some embodiments, the high TMB has a score of at least 210, at least 215, at least 220, at least 225, at least 230, at least 235, at least 240, at least 245, at least 250, at least 255, at least 260, at least 265, at least 270, at least 275, at least 280, at least 285, at least 290, at least 295, at least 300, at least 305, at least 310, at least 315, at least 320, at least 325, at least 330, at least 335, at least 340, at least 345, at least 350, at least 355, at least 360, at least 365, at least 370, at least 375, at least 380, at least 385, at least 390, at least 395, at least 400, at least 405, at least 410, at least 415, at least 420, at least 425, at least 430, at least 435, at least 440, at least 445, at least 450, at least 455, at least 460, at least 465, at least 470, at least 475, at least 480, at least 485, at least 490, at least 495, or at least 500. In other embodiments, the high TMB has a score of at least 215, at least 220, at least 221, at least 222, at least 223, at least 224, at least 225, at least 226, at least 227, at least 228, at least 229, at least 230, at least 231, at least 232, at least 233, at least 234, at least 235, at least 236, at least 237, at least 238, at least 239, at least 240, at least 241, at least 242, at least 243, at least 244, at least 245, at least 246, at least 247, at least 248, at least 249, or at least 250. In a particular embodiment, the high TMB has a score of at least 243.

[0015] In some embodiments, the methods further comprise comparing the subject's TMB status to a reference TMB value. In one embodiment, the subject's TMB status is within the highest fractile of the reference TMB value. In another embodiment, the subject's TMB status is within the top tertile of the reference TMB value.

[0016] In some embodiments, the biological sample is a tumor tissue biopsy, e.g., a formalin-fixed, paraffin-embedded tumor tissue or a fresh-frozen tumor tissue. In other embodiments, the biological sample is a liquid biopsy. In some embodiments, the biological sample comprises one or more of blood, serum, plasma, exoRNA, circulating tumor cells, ctDNA, and cfDNA.

[0017] In some embodiments, the subject has a tumor with a high neoantigen load. In other embodiments, the subject has an increased T-cell repertoire.

[0018] In some embodiments, the tumor is lung cancer. In one embodiment, the lung cancer is non-small cell lung cancer (NSCLC). The NSCLC can have a squamous histology or a non-squamous histology.

[0019] In other embodiments, the tumor is selected from renal cell carcinoma, ovarian cancer, colorectal cancer, gastrointestinal cancer, esophageal cancer, bladder cancer, lung cancer, and melanoma.

[0020] In some embodiments, the anti-PD-1 antibody or antigen-binding portion thereof cross-competes with nivolumab for binding to human PD-1. In other embodiments, the anti-PD-1 antibody or antigen-binding portion thereof binds to the same epitope as nivolumab. In some embodiments, the anti-PD-1 antibody is a chimeric antibody, a humanized antibody, a human monoclonal antibody, or an antigen-binding portion thereof. In other embodiments, the anti-PD-1 antibody or antigen-binding portion thereof comprises a heavy chain constant region of a human IgG1 isotype or a human IgG4 isotype. In particular embodiments, the anti-PD-1 antibody or antigen-binding portion thereof is nivolumab or pembrolizumab.

[0021] In some embodiments, the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose ranging from 0.1 mg/kg to 10.0 mg/kg body weight once every 2, 3, or 4 weeks. In one embodiment, the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 5 mg/kg or 10 mg/kg body weight once every 3 weeks. In another embodiment, the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 5 mg/kg body weight once every 3 weeks. In yet another embodiment, the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 3 mg/kg body weight once every 2 weeks.

[0022] In some embodiments, the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose. In one embodiment, the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose of at least about 200 mg, at least about 220 mg, at least about 240 mg, at least about 260 mg, at least about 280 mg, at least about 300 mg, at least about 320 mg, at least about 340 mg, at least about 360 mg, at least about 380 mg, at least about 400 mg, at least about 420 mg, at least about 440 mg, at least about 460 mg, at least about 480 mg, at least about 500 mg, or at least about 550 mg. In another embodiment, the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose about once every 1, 2, 3, or 4 weeks.

[0023] In some embodiments, the subject exhibits progression-free survival of at least about one month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about one year, at least about eighteen months, at least about two years, at least about three years, at least about four years, or at least about five years after the administration.

[0024] In other embodiments, the subject exhibits an overall survival of at least about one month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about one year, at least about eighteen months, at least about two years, at least about three years, at least about four years, or at least about five years after the administration.

[0025] In yet other embodiments, the subject exhibits an objective response rate of at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.

[0026] In some embodiments, the tumor has at least about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, or about 50% PD-L1 expression.

[0027] Other features and advantages of the instant disclosure will be apparent from the following detailed description and examples which should not be construed as limiting. The contents of all cited references, including scientific articles, newspaper reports, GenBank entries, patents and patent applications cited throughout this application are expressly incorporated herein by reference.

Embodiments

[0028] Embodiment 1. A method for treating a subject afflicted with a tumor comprising administering to the subject a therapeutically effective amount of an antibody or antigen-binding portion thereof that binds specifically to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity (“an anti-PD-1 antibody or antigen-binding portion thereof”), wherein the tumor has a tumor mutational burden (TMB) status that is a high TMB.

[0029] Embodiment 2. The method of Embodiment 1, further comprising measuring the TMB status of a biological sample obtained from the subject.

[0030] Embodiment 3. A method of identifying a subject suitable for a therapy of an anti-PD-1 antibody or antigen-binding portion thereof comprising measuring a TMB status of a biological sample of the subject, wherein the TMB status is a high TMB and wherein the subject is identified as being suitable for the therapy of an anti-PD-1 antibody or antigen-binding portion thereof.

[0031] Embodiment 4. The method of Embodiment 3, further comprising administering to the subject the anti-PD-1 antibody or antigen-binding portion thereof.

[0032] Embodiment 5. The method of any one of Embodiments 1 to 4, wherein the TMB status is determined by sequencing nucleic acids in the tumor and identifying a genomic alteration in the sequenced nucleic acids.

[0033] Embodiment 6. The method of Embodiment 5, wherein the genomic alteration comprises one or more somatic mutations.

[0034] Embodiment 7. The method of Embodiment 5 or 6, wherein the genomic alteration comprises one or more nonsynonymous mutations.

[0035] Embodiment 8. The method of any one of Embodiments 5 to 7, wherein the genomic alteration comprises one or more missense mutations.

[0036] Embodiment 9. The method of any one of Embodiments 5 to 8, wherein the genomic alteration comprises one or more alterations selected from the group consisting of a base pair substitution, a base pair insertion, a base pair deletion, a copy number alteration (CNAs), a gene rearrangement, and any combination thereof.

[0037] Embodiment 10. The method of any one of Embodiments 1 to 9, wherein the high TMB has a score of at least 210, at least 215, at least 220, at least 225, at least 230, at least 235, at least 240, at least 245, at least 250, at least 255, at least 260, at least 265, at least 270, at least 275, at least 280, at least 285, at least 290, at least 295, at least 300, at least 305, at least 310, at least 315, at least 320, at least 325, at least 330, at least 335, at least 340, at least 345, at least 350, at least 355, at least 360, at least 365, at least 370, at least 375, at least 380, at least 385, at least 390, at least 395, at least 400, at least 405, at least 410, at least 415, at least 420, at least 425, at least 430, at least 435, at least 440, at least 445, at least 450, at least 455, at least 460, at least 465, at least 470, at least 475, at least 480, at least 485, at least 490, at least 495, or at least 500.

[0038] Embodiment 11. The method of any one of Embodiments 1 to 9, wherein the high TMB has a score of at least 215, at least 220, at least 221, at least 222, at least 223, at least 224, at least 225, at least 226, at least 227, at least 228, at least 229, at least 230, at least 231, at least 232, at least 233, at least 234, at least 235, at least 236, at least 237, at least 238, at least 239, at least 240, at least 241, at least 242, at least 243, at least 244, at least 245, at least 246, at least 247, at least 248, at least 249, or at least 250.

[0039] Embodiment 12. The method of any one of Embodiments 1 to 11, wherein the high TMB has a score of at least 243.

[0040] Embodiment 13. The method of any one of Embodiments 1 to 12, further comprising comparing the subject's TMB status to a reference TMB value.

[0041] Embodiment 14. The method of Embodiment 13, wherein the subject's TMB status is within the highest fractile of the reference TMB value.

[0042] Embodiment 15. The method of Embodiment 13, wherein the subject's TMB status is within the top tertile of the reference TMB value.

[0043] Embodiment 16. The method of any one of Embodiments 1 to 15, wherein the biological sample is a tumor tissue biopsy.

[0044] Embodiment 17. The method of Embodiment 16, wherein the tumor tissue is a formalin-fixed, paraffin-embedded tumor tissue or a fresh-frozen tumor tissue.

[0045] Embodiment 18. The method of any one of Embodiments 1 to 15, wherein the biological sample is a liquid biopsy.

[0046] Embodiment 19. The method of any one of Embodiments 1 to 15, wherein the biological sample comprises one or more of blood, serum, plasma, exoRNA, circulating tumor cells, ctDNA, and cfDNA.

[0047] Embodiment 20. The method of any one of Embodiments 1 to 19, wherein the TMB status is determined by genome sequencing.

[0048] Embodiment 21. The method of any one of Embodiments 1 to 19, wherein the TMB status is determined by exome sequencing.

[0049] Embodiment 22. The method of any one of Embodiments 1 to 19, wherein the TMB status is determined by genomic profiling.

[0050] Embodiment 23. The method of Embodiment 22, wherein the genomic profile comprises at least 300 genes, at least 305 genes, at least 310 genes, at least 315 genes, at least 320 genes, at least 325 genes, at least 330 genes, at least 335 genes, at least 340 genes, at least 345 genes, at least 350 genes, at least 355 genes, at least 360 genes, at least 365 genes, at least 370 genes, at least 375 genes, at least 380 genes, at least 385 genes, at least 390 genes, at least 395 genes, or at least 400 genes.

[0051] Embodiment 24. The method of Embodiment 22, wherein the genomic profile comprises at least 325 genes.

[0052] Embodiment 25. The method of any one of Embodiments 22 to 24, wherein the genomic profile comprises one or more genes selected from the group consisting of ABL1, BRAF, CHEK1, FANCC, GATA3, JAK2, MITF, PDCDILG2, RBM10, STAT4, ABL2, BRCA1, CHEK2, FANCD2, GATA4, JAK3, MLH1, PDGFRA, RET, STK11, ACVR1B, BRCA2, CIC, FANCE, GATA6, JUN, MPL, PDGFRB, RICTOR, SUFU, AKT1, BRD4, CREBBP, FANCF, GID4 (C17orf39), KAT6A (MYST3), MRE11A, PDK1, RNF43, SYK, AKT2, BRIP1, CRKL, FANCG, GLI1, KDM5A, MSH2, PIK3C2B, ROS1, TAF1, AKT3, BTG1, CRLF2, FANCL, GNA11, KDM5C, MSH6, PIK3CA, RPTOR, TBX3, ALK, BTK, CSF1R, FAS, GNA13, KDM6A, MTOR, PIK3CB, RUNX1, TERC, AMER1 (FAM123B), C11orf30 (EMSY), CTCF, FAT1, GNAQ, KDR, MUTYH, PIK3CG, RUNX1T1, TERT (promoter only), APC, CARD11, CTNNA1, FBXW7, GNAS, KEAP1, MYC, PIK3R1, SDHA, TET2, AR, CBFB, CTNNB1, FGF10, GPR124, KEL, MYCL (MYCL1), PIK3R2, SDHB, TGFBR2, ARAF, CBL, CUL3, FGF14, GRIN2A, KIT, MYCN, PLCG2, SDHC, TNFAIP3, ARFRP1, CCND1, CYLD, FGF19, GRM3, KLHL6, MYD88, PMS2, SDHD, TNFRSF14, ARID1A, CCND2, DAXX, FGF23, GSK3B, KMT2A (MLL), NF1, POLD1, SETD2, TOP1, ARID1B, CCND3, DDR2, FGF3, H3F3A, KMT2C (MLL3), NF2, POLE, SF3B1, TOP2A, ARID2, CCNE1, DICER1, FGF4, HGF, KMT2D (MLL2), NFE2L2, PPP2R1A, SLIT2, TP53, ASXL1, CD274, DNMT3A, FGF6, HNF1A, KRAS, NFKBIA, PRDM1, SMAD2, TSC1, ATM, CD79A, DOT1L, FGFR1, HRAS, LMO1, NKX2-1, PREX2, SMAD3, TSC2, ATR, CD79B, EGFR, FGFR2, HSD3B1, LRP1B, NOTCH1, PRKAR1A, SMAD4, TSHR, ATRX, CDC73, EP300, FGFR3, HSP90AA1, LYN, NOTCH2, PRKCI, SMARCA4, U2AF1, AURKA, CDH1, EPHA3, FGFR4, IDH1, LZTR1, NOTCH3, PRKDC, SMARCB1, VEGFA, AURKB, CDK12, EPHA5, FH, IDH2, MAGI2, NPM1, PRSS8, SMO, VHL, AXIN1, CDK4, EPHA7, FLCN, IGF1R, MAP2K1, NRAS, PTCH1, SNCAIP, WISP3, AXL, CDK6, EPHB1, FLT1, IGF2, MAP2K2, NSD1, PTEN, SOCS1, WT1, BAP1, CDK8, ERBB2, FLT3, IKBKE, MAP2K4, NTRK1, PTPN11, SOX10, XPO1, BARD1, CDKN1A, ERBB3, FLT4, IKZF1, MAP3K1, NTRK2, QKI, SOX2, ZBTB2, BCL2, CDKN1B, ERBB4, FOXL2, IL7R, MCL1, NTRK3, RAC1, SOX9, ZNF217, BCL2L1, CDKN2A, ERG, FOXP1, INHBA, MDM2, NUP93, RAD50, SPEN, ZNF703, BCL2L2, CDKN2B, ERRF11, FRS2, INPP4B, MDM4, PAK3, RAD51, SPOP, BCL6, CDKN2C, ESR1, FUBP1, IRF2, MED12, PALB2, RAF1, SPTA1, BCOR, CEBPA, EZH2, GABRA6, IRF4, MEF2B, PARK2, RANBP2, SRC, BCORL1, CHD2, FAM46C, GATA1, IRS2, MEN1, PAX5, RARA, STAG2, BLM, CHD4, FANCA, GATA2, JAK1, MET, PBRM1, RB1, STAT3, and any combination thereof.

[0053] Embodiment 26. The method of any one of Embodiments 1 to 25, further comprising identifying a genomic alteration in one or more of ETV4, TMPRSS2, ETV5, BCR, ETV1, ETV6, and MYB.

[0054] Embodiment 27. The method of any one of Embodiments 1 to 26, wherein the subject has a tumor with a high neoantigen load.

[0055] Embodiment 28. The method of any one of Embodiments 1 to 27, wherein the subject has an increased T-cell repertoire.

[0056] Embodiment 29. The method of any one of Embodiments 1 to 28, wherein the tumor is lung cancer.

[0057] Embodiment 30. The method of Embodiment 29, wherein the lung cancer is non-small cell lung cancer (NSCLC).

[0058] Embodiment 31. The method of Embodiment 30, wherein the NSCLC has a squamous histology.

[0059] Embodiment 32. The method of Embodiment 30, wherein the NSCLC has a non-squamous histology.

[0060] Embodiment 33. The method of any one of Embodiments 1 to 28, wherein the tumor is selected from renal cell carcinoma, ovarian cancer, colorectal cancer, gastrointestinal cancer, esophageal cancer, bladder cancer, lung cancer, and melanoma.

[0061] Embodiment 34. The method of any one of Embodiments 1 to 33, wherein the anti-PD-1 antibody or antigen-binding portion thereof cross-competes with nivolumab for binding to human PD-1.

[0062] Embodiment 35. The method of any one of Embodiments 1 to 34, wherein the anti-PD-1 antibody or antigen-binding portion thereof binds to the same epitope as nivolumab.

[0063] Embodiment 36. The method of any one of Embodiments 1 to 35, wherein the anti-PD-1 antibody is a chimeric antibody, a humanized antibody, a human monoclonal antibody, or an antigen-binding portion thereof.

[0064] Embodiment 37. The method of any one of Embodiments 1 to 36, wherein the anti-PD-1 antibody or antigen-binding portion thereof comprises a heavy chain constant region of a human IgG1 isotype or a human IgG4 isotype.

[0065] Embodiment 38. The method of any one of Embodiments 1 to 37, wherein the anti-PD-1 antibody or antigen-binding portion thereof is nivolumab.

[0066] Embodiment 39. The method of any one of Embodiments 1 to 37, wherein the anti-PD-1 antibody or antigen-binding portion thereof is pembrolizumab.

[0067] Embodiment 40. The method of any one of Embodiments 1 to 39, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose ranging from 0.1 mg/kg to 10.0 mg/kg body weight once every 2, 3, or 4 weeks.

[0068] Embodiment 41. The method of any one of Embodiments 1 to 40, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 5 mg/kg or 10 mg/kg body weight once every 3 weeks.

[0069] Embodiment 42. The method of any one of Embodiments 1 to 41, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 5 mg/kg body weight once every 3 weeks.

[0070] Embodiment 43. The method of any one of Embodiments 1 to 40, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered at a dose of 3 mg/kg body weight once every 2 weeks.

[0071] Embodiment 44. The method of any one of Embodiments 1 to 39, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose.

[0072] Embodiment 45. The method of Embodiment 44, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose of at least about 200 mg, at least about 220 mg, at least about 240 mg, at least about 260 mg, at least about 280 mg, at least about 300 mg, at least about 320 mg, at least about 340 mg, at least about 360 mg, at least about 380 mg, at least about 400 mg, at least about 420 mg, at least about 440 mg, at least about 460 mg, at least about 480 mg, at least about 500 mg, or at least about 550 mg.

[0073] Embodiment 46. The method of Embodiment 44 or 45, wherein the anti-PD-1 antibody or antigen-binding portion thereof is administered as a flat dose about once every 1, 2, 3, or 4 weeks.

[0074] Embodiment 47. The method of any one of Embodiments 1 to 46, wherein the subject exhibits progression-free survival of at least about one month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about one year, at least about eighteen months, at least about two years, at least about three years, at least about four years, or at least about five years after the administration.

[0075] Embodiment 48. The method of any one of Embodiments 1 to 47, wherein the subject exhibits an overall survival of at least about one month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about one year, at least about eighteen months, at least about two years, at least about three years, at least about four years, or at least about five years after the administration.

[0076] Embodiment 49. The method of any one of Embodiments 1 to 48, wherein the subject exhibits an objective response rate of at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.

[0077] Embodiment 50. The method of any one of Embodiments 1 to 49, wherein the tumor has at least about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, or about 50% PD-L1 expression.

[0078] Embodiment 51. A method of identifying a subject suitable for a cancer therapy comprising measuring a TMB status of a tumor sample of the subject using a platform, wherein the TMB status is determined by sequencing cancer-related genes and select introns.

[0079] Embodiment 52. The method of Embodiment 51, wherein the cancer therapy comprises administering to the subject a therapeutically effective amount of an antibody or antigen-binding portion thereof that binds specifically to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity (“an anti-PD-1 antibody or antigen-binding portion thereof”).

[0080] Embodiment 53. The method of Embodiment 51 or 52, wherein the tumor is selected from renal cell carcinoma, ovarian cancer, colorectal cancer, gastrointestinal cancer, esophageal cancer, bladder cancer, lung cancer, and melanoma.

[0081] Embodiment 54. The method of any one of Embodiments 1 to 53, wherein the TMB status is measured using a FOUNDATIONONE® assay.



     e-mail to a friend      printer-friendly     add to library      
|  
Recs: 0  
   Views: 0 []
Previous Message  Next Message    Post Message    Post a Reply return to message boardtop of board




Financial Market Data provided by
.
Loading...